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Abstract. We investigate the partial order on the alternating group generated by all 3-
cycles. We first describe the cover relations in this poset. Permutations with odd cycles
occur naturally, and we study the lower intervals they induce. These intervals are
naturally embedded in the lattices of noncrossing partitions, and we provide several
enumeration formulas for them. We also study the natural action of the braid group on
the maximal chains in any given interval, and determine when this action is transitive.
We also outline the many ways in which our construction can, or could, be extended.

Résumé. Nous étudions l’ordre partiel sur le groupe alterné engendré par les 3-cycles.
Nous décrivons d’abord les relations de couvertures de ce poset. Les permutations
avec cycles impairs apparaissent naturellement, et nous étudions les intervalles in-
férieurs qu’elles induisent. Ces intervalles sont naturellement plongés dans les treillis
de partitions non croisées, et nous donnons de nombreuses formules énumératives.
Nous étudions de plus l’action du groupe de tresses sur les chaînes maximales de tout
intervalle de notre poset et déterminons quand celle-ci est transitive. Nous esquissons
aussi les manières possibles ou envisageables d’étendre notre contruction.

Keywords: noncrossing partition, cycle, permutation factorization, poset, braid group,
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1 Introduction

Given a group G generated by a finite set T closed under taking inverses, the (right)
Cayley graph C(G, T ) is one of the most fundamental geometric objects to attach to it.
Recall that the vertex set of C(G, T ) is G, and that its edges are of the form (g, gt) for
g ∈ G, t ∈ T . Since T = T −1 the graph C(G, T ) is considered undirected, and comes
with a natural graph distance which can be written as dC(g, g′) = `T (g−1g′). Here the
length `T (g) is the minimum k such that there exists a factorization g = t1t2 · · · tk where
each ti is in T . Such factorizations are T -reduced and RedT (g) denotes the set of all
T -reduced factorizations of g.

The relation defined by u ≤T v if and only if `T (v) = `T (u) + `T (u−1v) is a partial
order on G, graded by `T . Geometrically, u ≤T v if u occurs on a geodesic from the
identity e to v in C(G, T ).

∗H.M. was partially supported by Digiteo project PAAGT (Nr. 2015-3161D).
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The goal of this work is to study this poset when G = AN is the alternating group
and T is the set of all 3-cycles. In that case we replace the subscript “T ” by a “3” in all
of the above definitions.

The motivating example is the case where G = SN is the symmetric group and T
is the set of all transpositions. We will often compare how our results are related to
this case, and we use the subscript “2” to refer to this example. It is a standard fact
that `2(x) = n − cyc(x), where cyc(x) denotes the number of cycles of x. The poset
(SN,≤2) was for instance studied in [2]. Moreover, it was observed in [4] that the lattice
of noncrossing partitions arises as the principal order ideal NCN = [e, c]2 where c is the
N-cycle c = (1 2 . . . N). See [14] for a survey on these lattices, and [13] for some
enumerative and structural properties:

We come back to the case of a general pair (G, T ).
We assume from now on that T is closed under G-conjugation. With this extra assumption,

the following pleasant properties hold (and are easily proved, see [11, Section 2]).
• If x, x′ ∈ G are G-conjugate, then `T (x) = `T (x′), and more generally the in-

tervals [e, x]T and [e, x′]T are isomorphic. In fact, even when T ⊆ G is closed under
G-conjugation, but generates a strict subgroup H, this isomorphism remains true for
any x, x′ ∈ H that are G-conjugate (and not necessarily H-conjugate).
• For any y ≤T z the bijection G → G defined by x 7→ yx−1z restricts to a poset anti-

isomorphism [y, z]T → [y, z]T (so the order is always locally self-dual). One particular
instance of such a bijection is the Kreweras complement Kz(x) = x−1z. The map Kz ◦ Ky−1z

is therefore an isomorphism from [y, z]T to [e, y−1z]T .
• For any k ≥ 2, the set T k of words over T of length k affords an action of the braid

group Bk on k strands, the Hurwitz action. Recall that Bk has generators σ1, σ2, . . . , σk−1
and relations σiσi+1σi = σi+1σiσi+1 and σiσj = σjσi for |j− i| > 1.

If x = t1t2 · · · tk is a word over T , then the Hurwitz operator σi acts on x by

σi · x = t1t2 · · · ti−1ti+1(t−1
i+1titi+1)ti+2 · · · tk,

and its inverse σ−1
i reverts this process. Two words are Hurwitz-equivalent if they are in

the same orbit for this action. It is clear that two Hurwitz-equivalent words represent
the same element in G. In particular, RedT (x) affords an action of B`T(x) for any x ∈ G.

For N ≥ 3, the set of all 3-cycles is closed under SN-conjugation. (In fact, for N ≥ 5, it
is even closed under AN-conjugation.) The poset (AN,≤3) therefore has all the properties
described above. It turns out that the subposet determined by the set Ao

N of permutations
with only odd cycles plays a special role. For instance, its intervals can be embedded
into (SN,≤2) as our first main result shows.

Theorem 1.1. For N ≥ 3 and x ∈ Ao
N the interval [e, x]3 is an induced subposet of the interval

[e, x]2 in (SN,≤2).
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We will moreover prove that any lower interval in (Ao
N,≤3) can be written as a direct

product of intervals induced by a single odd cycle (Proposition 2.3). Since the set of
3-cycles is invariant under conjugation, the structure of any interval in (Ao

N,≤3) can be
deduced from the structure of the posets ENC2n+1 := [e, (1 2 . . . 2n+1)]3.

Our second main result determines the decomposition numbers of this poset. (See
Section 3 for any undefined terminology.)

Theorem 1.2. For n, m ≥ 1, the number of (m− 1)-multichains of ENC2n+1 with rank-jump
vector (r1, r2, . . . , rm) is

(2n + 1)m−1
m

∏
i=1

1
2n− 2ri + 1

(
2n− ri

ri

)
.

Finally, our third main result further emphasizes the special role of Ao
N: it consists of

all elements whose induced order ideals afford a transitive Hurwitz action.

Theorem 1.3. For N ≥ 3 we have x ∈ Ao
N if and only if B`3(x) acts transitively on Red3(x).

The rest of this abstract is organized as follows: in Section 2.1 we give an explicit
formula for the length function `3 together with a characterization of the cover relations
in (AN,≤3). In Section 2.2 we prove Theorem 1.1 and introduce the posets ENC2n+1. In
Section 3, we prove Theorem 1.2 and provide further enumerative results. In Section 4
we determine the number of orbits under the Hurwitz action for the reduced factoriza-
tions of any element in AN, and thus obtain the proof of Theorem 1.3. We finish this
abstract with an outlook on possible extensions and generalizations of this construction
in Section 5.

2 A New Order on Alternating Groups

2.1 Structural Properties

To analyze the graded poset (AN,≤3), the starting point is naturally to give an explicit
formula for the length function `3. For x ∈ AN let ocyc(x) denote the number of cycles
of x with odd length. The following result seems to have been established only in [10,
Corollary 2.4 (i)], so we will sketch an independent proof.

Proposition 2.1. For N ≥ 3 and x ∈ AN , we have `3(x) = N−ocyc(x)
2 .

Sketch of the proof. Given x ∈ AN and a 3-cycle a, it is easily checked that there are three
cases for the relation between the cycle decompositions of x and xa: three cycles of x are
merged into one, one cycle is cut into three, and two cycles are merged and the result
then cut in two.
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Now let r(x) := N−ocyc(x)
2 . Notice that r(e) = 0, and by the analysis above there holds

r(xa) ≤ r(x) + 1 in any case. Therefore r(x) ≤ `3(x) for any x. On the other hand, for
any x 6= e, one can construct a 3-cycle a such that r(xa) = r(x)− 1. This is enough to
show that r = `3.

Recall that in a poset (P,≤) a cover relation is a pair (x, y) such that x < y and there
is no z ∈ P with x < z < y; we then write x l y. From the previous proposition and its
proof we obtain the following description of ≤3:

Proposition 2.2. Let y ∈ AN. An element x satisfies x l3 y if and only if it is obtained by one
of the following operations:

1. Pick an odd cycle of y and split it into three odd cycles.

2. Pick an even cycle of y and split it into two odd cycles and one even cycle.

3. Pick two even cycles of y, join them, and split the resulting cycle into two odd cycles.

The next result describes a decomposition of the lower intervals in (AN,≤A).

Proposition 2.3. Let y ∈ AN. Write y = ζ1ζ2 · · · ζkξ where the ζi are the odd cycles of y and ξ

is the product of its even cycles. Then we have a poset isomorphism

[e, y]3 ∼= [e, ζ1]3 × [e, ζ2]3 × · · · × [e, ζk]3 × [e, ξ]3.

given by f−1 where f (x1, x2, . . . , xk, y) = x1x2 · · · xky.

2.2 Embedding

Let Ao
N ⊆ AN be the subset of permutations having only odd cycles. In this case, Propo-

sitions 2.1 and 2.2 become simpler.

Proposition 2.4. Ao
N is a lower ideal of (AN,≤3), and `3(x) = `2(x)

2 for x ∈ Ao
N. Moreover

x l y in (Ao
N,≤3) if and only if x is obtained by splitting an odd cycle of y in three odd cycles.

It follows, thanks to Proposition 2.3 and the invariance properties of ≤3, that any
interval in (Ao

N,≤3) is isomorphic to a product of lower intervals induced by odd cycles.
We proceed to describe the elements of such intervals.

Given an increasing cycle (u1 < u2 < · · · < uq) of a permutation, we define the
following property:

(OD) q is odd and uj+1 − uj is odd for all 1 ≤ j ≤ q− 1.
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Recall from the introduction that NCN is the set of elements in the interval [e, x]2
for x = (1 2 . . . N). Permutations in NCN are characterized by two properties ([4]):
all of their cycles increasing, and they induce a noncrossing partition. We will say that
x ∈ NCN satisfies Property (OD) if all its cycles do. It is clear that such permutations are
in Ao

N.

Definition 2.5. Let N ≥ 3. We define ENCN ⊆ Ao
N to be the set of all elements x ∈ NCN which

satisfy Property (OD).

Theorem 2.6. Let n ≥ 1 and x ∈ A2n+1. Then x ≤3 (1 2 · · · 2n+1) if and only if x ∈
ENC2n+1.

Sketch of the proof. We write c = (1 2 · · · 2n+1). In both directions we perform an
induction on n− `3(x). The base of the induction is x = c each time, which is clearly
satisfied.

To prove necessity, we can take x <3 c, and may thus find an upper cover y ≤3 c of x
which by induction satisfies Property (OD). Proposition 2.2 implies that x is constructed
by splitting an odd cycle of y into three odd cycles, and a case-distinction yields the
claim that x satisfies Property (OD).

To prove sufficiency, we take x <2 c that satisfies Property (OD), and denote by ζ1
the cycle of x containing 1. Since x 6= c, there must be consecutive elements in ζ1 whose
values differ by more than 1. Since x ∈ NC2n+1, there must be a cycle ζ2 in between
these values, and since x satisfies Property (OD) we can in fact find a third cycle ζ3
which also lies between these consecutive values. Let i, j, k denote the smallest elements
of ζ1, ζ2, ζ3, respectively. It is quickly verified that y = x · (i j k) is in NC2n+1 and satisfies
Property (OD). By induction we get y ≤3 c, and thus by Proposition 2.2 we conclude
x l3 y ≤3 c.

Figure 1 shows the poset ENC7 = (ENC7,≤3). We remark that this is not a lattice,
contrary to the usual lattice of noncrossing partitions. An important property of ENCN
is that it is closed under taking Kreweras complements.

Proposition 2.7. Let y ∈ ENCN and x ≤3 y. If x ∈ ENCN, then Ky(x) = x−1y ∈ ENCN.

We skip the proof, which consists of a simple verification of the cycle structure x−1,
based on the characterization of Theorem 2.6. We are now in the position to prove
Theorem 1.1.

Proof of Theorem 1.1. Propositions 2.4 and 2.7 imply that for all x ∈ ENCN we have
`3(x) = `2(x)

2 . By definition, we conclude x ≤3 y if and only if x ≤2 y for all x, y ∈ ENCN,
which settles the claim for all intervals in ENCN. Moreover, any y ∈ Ao

N is SN-conjugate
to some x ∈ ENCN. The conjugation-invariance of `3 together with the first part of this
proof settles the claim.
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(1)

(1 6 7) (2 3 6) (4 5 6) (1 4 7) (2 3 4) (2 5 6) (1 2 7) (3 4 7) (5 6 7) (1 2 5) (3 4 5) (3 6 7) (1 2 3) (1 4 5)

(1 6 7)(3 4 5) (1 2 3 6 7) (1 2 3)(4 5 6) (1 4 5 6 7) (1 6 7)(2 3 4) (2 3 4 5 6) (1 2 7)(4 5 6) (1 2 3 4 7) (2 3 4)(5 6 7) (1 2 5 6 7) (1 2 7)(3 4 5) (3 4 5 6 7) (1 2 3)(5 6 7) (1 2 3 4 5)

(1 2 3 4 5 6 7)

Figure 1: The poset ENC7 = (ENC7,≤3).

3 Enumerative Results

We further investigate the poset ENC2n+1 by presenting enumerative results, Theorems 1.2
and 3.1, which are counterparts of similar ones for NCn, see [7] for instance.

Recall that an m-multichain in a graded poset (P,≤) of rank n is a tuple (x1, x2, . . . , xm)
with x1 ≤ x2 ≤ · · · ≤ xm, and that the rank-jump vector of such an m-multichain is the
(m + 1)-tuple

(
rk(x1), rk(x2− x1), . . . , rk(xm)− rk(xm−1), n− rk(xm)

)
. We start with the

proof of Theorem 1.2.

Proof of Theorem 1.2. An (m− 1)-multichain with rank-jump vector (r1, r2, . . . , rm) in the
poset ENC2n+1 corresponds bijectively to a factorization (1 2 · · · 2n+1) = y1y2 · · · ym
that is reduced for `3, and where yi ∈ Ao

2ri+1 for i ∈ {1, 2, . . . , m}. Since ENC2n+1 is an
induced subposet of NC2n+1 (Theorem 1.1), one can assume equivalently that the factor-
ization is reduced for `2. Therefore we are in the setting of [12, Lemma 4 and Theorem
5] which gives us the result.

As a special case, by taking m = 2 and (r1, r2) = (k, n− k) we find that the number
of elements of rank k in ENC2n+1 is given by

2n + 1
(2n− 2k + 1)(2k + 1)

(
2n− k

k

)(
n + k
n− k

)
.

Also, there are (2n + 1)n−1 maximal chains in this poset; by definition this is equiva-
lently the cardinality of Red3(c) for c = (1 2 · · · 2n+1).
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Recall further that the zeta polynomial Z(P , m) of a poset P counts the number of
(m− 1)-multichains in the poset when m is a positive integer.

Theorem 3.1. For n ≥ 1, the zeta polynomial of ENC2n+1 is

Z(ENC2n+1, m) =
m

(2m− 1)n + m

(
(2m− 1)n + m

n

)
.

Proof. By definition, one needs to sum the formula of Theorem 1.2 over all rank jump
vectors of size m that sum up to n. To do this, one needs to use a multivariate general-
ization of the Rothe-Hagen identity [8].

As a corollary, we can conclude the cardinality, the number of intervals and the
Möbius number of ENC2n+1: these correspond indeed to the evaluation of the zeta poly-
nomials at m = 2, m = 3, and m = −1, respectively.

Corollary 3.2. For n ≥ 1, the poset ENC2n+1 has 1
n+1(

3n+1
n ) elements, 3

5n+3(
5n+3

n ) intervals,

and its Möbius number is (−1)n

4n+1 (
4n+1

n ).

We end this section with two remarks, which concern respectively bijections and the
connection to combinatorial maps.

Remark 3.3. In the full version of this abstract we provide bijective proofs for some of
the above results. We mention two of them: first, the characterization of Theorem 2.6
enables us to restrict the classical correspondence [9] between noncrossing partitions
and planar bicolored trees to our setting. We obtain a bijection between ENC2n+1 and
marked bicolored plane trees where all vertices have odd degree and a total of 2n + 1
edges: these are in bijection with plane ternary trees thus proving the first formula of
Corollary 3.2. Secondly, we can also generalize Biane’s bijective approach [5] between
maximal chains in NCn+1 and parking functions of length n to our setting. This gives us
a bijection between maximal chains in ENC2n+1 and 2-parking functions of length n.

It would be interesting to generalize Edelman’s bijections for NCn [7] (a mere restric-
tion of his construction does not seem sufficient to obtain closed formulas). This would
give full bijective proofs for Theorems 1.2 and 3.1.

Remark 3.4. These enumerative results are related to combinatorial maps in the following
way: there is a nice dictionary between maps and certain factorizations of permutations
σ = x1x2 . . . xk ∈ Sn, see [6]. In this context, only transitive factorizations are considered,
that is, the subgroup generated by the factors xi acts transitively on {1, 2, . . . , n}. Since `2
is a length function, one has always `2(σ) ≤ ∑i `2(xi), and a minimal transitive factorization
is a transitive factorization where equality holds. Now factorizations of a long cycle are
always transitive since such a cycle acts transitively, which explains why the results of
this section can be interpreted in terms of maps.
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Assume now that the factors xi are 3-cycles, and let x ∈ An. A simple computation
shows that Red3(x) consists of minimal transitive factorizations if and only either (i) n
is odd and x is a long, odd cycle or (ii) n is even and x is the product of two even cycles.
We just dealt with (i), while the combinatorics of (ii) are a key element of the Hurwitz
action in the next section.

4 Hurwitz Orbits

This section is devoted to the proof of Theorem 1.3. To illustrate it, the five elements of
Red3

(
(1 2 3 4 5)

)
form a single Hurwitz orbit:

(1 2 3)(3 4 5) (3 4 5)(1 2 5) (1 2 5)(2 3 4) (2 3 4)(1 4 5) (1 4 5)(1 2 3),

whereas Red3
(
(1 2)(3 4)

)
contains eight words grouped in two Hurwitz orbits:

(1 2 3)(2 3 4), (2 3 4)(2 1 4), (2 1 4)(1 4 3), (1 4 3)(1 2 3),
(1 2 4)(2 4 3), (2 4 3)(2 1 3), (2 1 3)(1 3 4), (1 3 4)(1 2 4).

This differs from the case of (Sn,≤2), since the Hurwitz action is always transitive
on Red2(x), cf. [3]. We will prove the following precise result, of which Theorem 1.3 is
a direct corollary.

Theorem 4.1. Let x ∈ AN, and denote by 2k the number of its even cycles. Then the Hurwitz
action on Red3(x) has (2k)!/k! = (k + 1)(k + 2) · · · (2k) orbits.

As a first step, note that Proposition 2.3 gives us a global structure for Red3(x):
keeping the notation, it says that elements of Red3(x) are exactly the “shuffling” of
elements of the union of all Red3(ζi) with Red3(ξ). Notice also that if, in a given word,
two adjacent letters in positions i and i + 1 commute, then the Hurwitz operator σi
performs this commutation.

This implies that in order to prove Theorem 4.1 it suffices to show that its statement
holds (i) for x an odd cycle, and (ii) for x having only even cycles. Since our results are
invariant under conjugation, Case (i) is dealt with in the following proposition.

Proposition 4.2. Let c = (1 2 · · · 2n+1) ∈ AN. The Hurwitz action is transitive on Red3(c).

Sketch of the proof. This is done by induction on length, following the lines of the proof
of [3, Proposition 1.6.1]. We start with the word x = (1 2 3)(3 4 5) · · · (2n−1 2n 2n+1) in
Red3(c). By picking well-chosen elements in the braid group, one shows that for any 3-
cycle a ≤3 c, there exists a word ya which is Hurwitz-equivalent to x. Now y represents
an element y covered by c, and so y has only odd cycles. By induction, the Hurwitz orbit
of y is the whole of Red3(y), which proves the proposition.
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Now we deal with Case (ii), so let x = ξ1ξ2 · · · ξ2k ∈ AN have only even cycles, which
form a set E(x) = {ξ1, ξ2, . . . , ξ2k}. Given x ∈ Red3(x), define a partition Mx of E(x) as
follows: ξi, ξ j are in the same block of Mx if there exists a 3-cycle (a1 a2 a3) in the word
x which commutes neither with ξi nor with ξ j; then extend by transitivity.

Recall that a (perfect) matching is a partition where all blocks have size 2. Then the
following proposition is a consequence of the cover relations described in Proposition 2.2.

Proposition 4.3. Mx is a matching which is invariant under the Hurwitz action on Red3(x).

This result stresses the role of the case |E(x)| = 2, and so we consider the case
x = (a1 a2 . . . a2p)(b1 b2 . . . b2q) ∈ AN. The 3-cycles a ≤3 x can be divided into two
families: On the one hand, pure generators have the form (ai aj ak) or (bi bj bk) where
i < j < k (one can then show that exactly one element among j− i, k − j, and i − k is
even). On the other hand, mixed generators have the form (ai aj bk) or (ai bj bk) (here
j− i must be odd in (ai aj bk) and k− j must be odd in (ai bj bk)). The parity of a mixed
generator of x is by definition the parity of k− i.

Lemma 4.4. Let x ∈ Red3(x). Then x contains at least two mixed generators, and all of its
mixed generators have the same parity.

We can therefore unambiguously say that x is even (respectively odd) if it contains an
even (respectively odd) mixed generator. Note that for the two orbits of Red3

(
(1 2)(3 4)

)
determined at the beginning of the section, the first one consists of odd words.

Sketch of the proof of Lemma 4.4. The fact that x contains at least two mixed generators
is a consequence of Proposition 2.2 once again, since the cycle factorization cannot be
achieved with zero or one mixed generator. Now pick two mixed generators in x: we
can assume that they occur at the last two positions of x by using the Hurwitz action
to place them there. A tedious case analysis based once again on Proposition 2.2 shows
that these generators have the same parity.

Proof of Theorem 4.1 (sketch). In view of Proposition 4.2 and the discussion preceding it,
it remains to deal with the case when x has only even cycles.

Assume first k = 1 and write x = (a1 a2 · · · a2p)(b1 b2 · · · b2q). Let x ∈ Red3(x),
and suppose without loss of generality that x contains an even mixed generator. Remark
that by definition the action of σi modifies at most one letter. The potential new letter
cannot be an odd mixed generator because that would contradict Lemma 4.4. It follows
immediately that, in a Hurwitz orbit of Red3(x), all words have the same parity. Since
it is easy to check that words of both parities occur in Red3(x), the Hurwitz action on
Red3(x) has at least two orbits.

We need to prove that there are exactly two orbits; equivalently, we must show that
words of a given parity form a single orbit. It is enough to show Hurwitz-transitivity for
even reduced words for x. Indeed, if we rewrite the second cycle as (b2 b3 · · · b2q b1),
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then it is quickly checked that the even words relative to one writing are in 1-to-1 cor-
respondence with the odd words relative to the other writing, by changing bi to bi+1
everywhere.

The proof of this transitivity is a bit more technical than the proof of Proposition 4.2,
but the main steps are similar: First, we fix a particular even word x in Red3(x), and
we show that any 3-cycle a ≤3 x which is pure or (mixed) even, occurs as the last letter
of an element in the orbit of x. Then we must study the Hurwitz action on Red3(x′)
for all x′ l3 x such that x = x′a with a as above. In view of Proposition 2.2, there
are two possibilities for x′: either x′ does not contain even cycles, in which case the
transitivity follows from Proposition 4.2, or x′ contains two even cycles, in which case
we get transitivity on even words by induction on `3(x) (here one must take care of
writing the new even cycles with increasing indices for ai’s and bj’s).

Now we return to the case of general k. We showed that for any matching M among
the even cycles of x, and a choice of “parity” for each one of the k pairs of M, we obtain
a Hurwitz-invariant subset S of Red3(x). It follows that there are at least (2k− 1)!!2k =
(2k)!/k! Hurwitz orbits. To finish the proof, we must show that the Hurwitz action is
transitive on any such S. Since generators with support in distinct pairs of M commute,
and the Hurwitz action performs this commutation when the generators are adjacent as
mentioned above, it is equivalent to show that for any pair {ξi, ξ j} in Mx the Hurwitz
action on Red3(ξiξ j) has two orbits. We are thus in the known case of two even cycles,
and the proof is complete.

5 Extensions

5.1 Generation by k-Cycles

In this abstract we investigated the order on the alternating group generated by all 3-
cycles, and we stressed the many nice parallels to the case of the symmetric group
generated by all 2-cycles. A natural question is to consider the order ≤k on the subgroup
of the symmetric group generated by all k-cycles (this subgroup is Sn when k is even,
and An when k is odd.)

It turns out that determining `k (and a fortiori ≤k) seems already like a hard problem
in general. In [10], a complicated formula for `4 is determined, but only bounds are
given for `k for larger k.

Things behave better when restricting to permutations that have only cycles of length
≡ 1 (mod k− 1). The values of `k and ≤k on these elements can be determined, and the
results from Sections 2.2 and 3 for Ao

2n+1 generalize nicely.
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5.2 m-Divisible Even Noncrossing Partitions

In the spirit of [7] and [1], a possible generalization of ENC2n+1 is to consider the poset
ENC(m)

2n+1 of m-multichains of ENC2n+1. Computer experiments suggest the following
result for the zeta polynomial of this poset.

Conjecture 5.1. For n, m ≥ 1 the zeta polynomial of ENC(m)
2n+1 is

Z
(
ENC(m)

2n+1, q
)
=

m(q− 1) + 1
(2m(q− 1) + 1)n + m(q− 1) + 1

(
(2m(q− 1) + 1)n + m(q− 1) + 1

n

)
.

5.3 Alternating Subgroups of Coxeter Groups

There is a natural way to extend the construction of the poset (AN,≤3) to any irreducible
Coxeter system (W, S) with Coxeter matrix (mst). The alternating subgroup A(W) of W is
by definition the kernel of the sign character of W. If T = {w−1sw | w ∈W, s ∈ S} is the
set of reflections, then one has equivalently A(W) = {w ∈W | `T(w) ≡ 0 (mod 2)}.

We noticed that A(W) is generated by the set

A(W) =
{

w−1stw | w ∈W, mst ≥ 3
}

.

Note that we exclude pairs of commuting generators s, t: in the case of the symmetric
group, this means that A does not contain double transpositions, but only 3-cycles as
desired. The set A = A(W) can be interpreted as the conjugation-closure of the edges
of the Coxeter diagram of W. We are then interested in extending the results of this
abstract to the generated group

(
A, A

)
and its associated length `A and order ≤A.

We are only in the preliminary stages of this investigation, but we performed some
computer explorations in type BN. Thus for N ≥ 2, we have `A(BN)(x) = N−ocyc(x)

2 for a
natural statistic of odd cycles for signed permutations.

Recall that a Coxeter element c of W is a product of any permutation of the Coxeter
generators of W, and `T(W) equals the rank of W. As a consequence, Coxeter elements
belong to A(W) if and only if W has even rank. In SN, the Coxeter elements are precisely
the N-cycles, and it is therefore an intriguing question to ask if the poset

ENCW(c) = {x ∈ A(W) | x ≤A c}

plays a role analogous to ENC2n+1 for A2n+1. In this direction, we conjecture the follow-
ing zeta polynomial for type B2n.

Conjecture 5.2. For n ≥ 1, the zeta polynomial of ENCB2n is

Z
(
ENCB2n , q

)
=

q
2q− 1

(
(2q− 1)n

n

)
.
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